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REGULARIZATIONOF THE CHAPMAN-ENSKOGEXPANSIONAND
ITS DESCRIPTIONOFSHOCKSTRUCTURE*

KUNXUl

Abstract. In the continuumtransitionflowregime,weproposeto truncatetheChapman-Enskog
expansionoftheBoltzmannequationtotheNavier-StokesorderonlywithoutgoingtotheBurnettorsuper
Burnettorders.However,thelocalparticlecollisiontimehasto begeneralizedto dependnotonlyonthe
localmacroscopicflowvariables,butalsotheirgradientsin therarefiedgasregime.Basedonthegas-kinetic
BGKmodel,therelationbetweentheconventionalcollisiontimeandthegeneraloneisobtained.More
specificially,ageneralizedconstitutiverelationfor stressandheatflux is proposed.Thisnewmodelis
appliedto thestudyof argongasshockstructure.Thereisgoodagreementbetweenthepredictedshock
structureandexperimentalresultsforawiderangeofMachnumbers.

Key words. Navier-Stokesequations,Chapman-Enskogexpansion,continuumtransitionflow,shock
structure

Subjectclassification.AppliedNumericalMathematics

1. Introduction. It iswellrecognizedthattheNavier-Stokesequationsoftheclassicalhydrodynamics
areincapableofaccuratelydescribingshockwavephenomenaandalsofortheflowphenomenaintherarefied
regime.In orderto improvetheNavier-Stokessolutions,muchefforthasbeenpaidontheconstructionof
higher-orderhydrodynamicequationsbasedontheChapman-Enskogexpansion.ButtheBurne_tandsuper
BurnettequationsgiveunstableshockstructuresinhighMachnumbercases.Forexample,noshockstructure
canbeobtainedfor theBurnettequationsaftera criticalMachnumberM,. = 2.69 [9]. Even though the

argumented Burnet_ of Zhong et al. and BGK-Burnett equations of Agarwal et al. can significantly improve

the Navier-Stokes solutions in the continuum transition regime [7, 14, 1], it is unclear that the stable shock

structures of these schemes are coming from _he complicated numerical dissipations, such as the use of

Steger Warming flux splitting scheme for the inviscid part of the equations [8], or _he selected higher-order

terms. As analyzed in [10], the failure of the Burnett equations for the shock structure calculation is not too

surprising because the applicability of the Chapman-Enskog expansion i_self is valid to the small Knudsen

numbers. The possible generation of spurious solutions from the higher-order terms in the Chapman-Enskog

expansion is another point for criticism [5].

This work is motivated originally by extending _he gas-kinetic BGK Navier-Stokes solver to the con-

tinuuln transition regime [12]. The direct adoption of the Chapman-Enskog expansion with the terms pro-

portional to Knudsen number K_ and K_ in the gas distribution function encounters great difficulty in the

shock structure calculations. The critical Mach number for the shock structure based on the BGK-Burnett

expansion is found to be around M_ = 4.5, and the number becomes even smaller, i.e., Mc = 2.0, with the

inclusion of super Burnett term [la]. Our numerical experiments show clearly that the successive Chapman-

Enskog expansion without selectively choosing higher order terms give divergent results as the Knudsen
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97046 while the author was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681-2199. Additional

support was provided by Hong Kong Research Grant Council through RGC HKUST6132/00P.
IMathematics Department, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

(emaihmakxu@uxmail.ust.hk).



number increases.However, up to the Navier-Stokes order, there is not any limitation on the Mach number

for the existence of the stable shock structure. This observation is consistent with the theoretical analysis

in [9].Therefore, itmay be possible to truncate the Chapman-Enskog expansion to the Navier-Stokes order

only and include the possible non-equilibrium effecton the modification of the viscosityand heat conduction

coefficients, the so-called constitutive relations. Traditionally, the particle collision time w is regarded as a

function of macroscopic variables. For example, based on the BGK model [3], we have the collision time

T = #/p, where # is the dynamical viscosity coefficient, such as the Sutherland's law, and p is the pressure.

All those viscosity coefficients are basically obtained either experimentally or theoretically in the continuum

flow regime [6]. There is no reason to guarantee that this relation is still applicable for the rarefied gas. In

this paper, we are going to derive a general particle collision time T,, which is applicable in both continuum

and continuum transition regime. This derivation is based on the closure of the Chapman-Enskog expansion

on the Navier-Stokes order and the BGK equation.

Closure of the Chapman-Enskog Expansion. The BGK model in the x-direction can be written2.

as IS]

(2.1) ft + uf_, -- 9 - f,
T

where f is the gas distribution function and 9 is the equilibrium state approached by f. Both f and g

are functions of space x, time t, particle velocities u, and internal variable _. The particle collision time _-

determines the viscosity and heat conduction coefficients, i.e., # = Tp. The equilibrium state is a Maxwellian

distribution,

(_)_ 2 2- _ e_),((__u) +¢_+¢_)9=p -,

where p is the density, U is the macroscopic velocity in the x direction, and ,k is related to the gas temperature

m/2#T. For a monatomic gas, _1 and _2 represent the particle velocities in the y and z directions. The

relation between mass p, momentum pU, and energy pE densities with the distribution function f is

where _b has the components

/ )pU = f C f dud& d_2,
\pE

1 2

Since mass, momentum and energy are conserved during particle collisions, f and g should satisfy the

compatibility condition

(2.2) f (g - f)_¢_dud_d(.2 = O, a = 1, 2, 3,

at any point in space and time.

It is well known that the Euler, the Navier-Stokes, and the Burnett, etc. equations can be derived

from the above BGK model using the Chapman-Enskog expansion [6]. The successive expansion of the

Chapman-Enskog expansion gives

f = 9 - _(9t + ugh) + T_(gn + 2W_, + "2gxx) -- T_(gttt + 3ug_,n + 3u2g_,_t + u_g_) + ...



which corresponds to the Euler (r0), the Navier-Stokes (r), the Burnett (r2), and the super Burnett (r 3) ...

orders. With the definition D = O/cOt + uO/Ox, we can write the above equation as

oo

y = g + Z(-TD)"g.
n 1

In the continuum transition regime, the Navier-Stokes equations are expected to be inaccurate and the

expansions beyond the Navier-Stokes order have only achieved limited success. As shown by Uribe et al.

[10], Bobylev's instability analysis basically provides a range of Knudsen numbers for which the Burnett

order is valid [4].

In order to increase the validity of the gas kinetic approach in the continuum transition regime, we have

to regularize the Chapman-Enskog expansion. The main idea of this paper is to close the Chapman-Enskog

expansion up to the Navier-Stokes order only without going to Burnett or super Burnett orders. But, instead

of keeping the original particle collision time 7, we have to construct a general one. In other words, we expand

the gas distribution function as

(2.3) f = g - 7, (gt + ugx),

and 7, is obtained to have the BGK equation to be satisfied,

(2.4) f = g - 7(f_ + Ufx).

When the spatial and temporal derivatives of the particle collision times are ignored, fi'om the above two

equations (2.3) and (2.4), we can get the relation between the original particle collision time 7 and the new

one 3-,

7

(2.5) -
1 + 7D2g/Dg

Therefore, the local particle collision time depends not only on the macroscopic variables through 7 = p/p,

but also the ratio between the Burnett order D2g and the Navier-Stokes order Dg. In the above equation,

7, depends on the particle velocities, which may introduce great complexity in using its solution. In order

to remove the particle velocity dependence in r,, we suggest to take a moment on D2g/D9 first, such as

D2g_
(2.6) {_Vg / - ./" _ (u )D2 gdud{l d{2 / ./" _ (u ) D gdud{l d{2

Here we propose to use _P(u) = (u - U) 2 in the above integration, where U is the local macroscopic velocity.

Other choices may be possible. But, due to the fact that both moments of Dg and D2g on (1, u, (1/2)(u 2 +

{s2 + _)) vanish, the above choice becomes the only one which mimics 'dissipative' energy in some sense.

In the expressions of D2g and Dg, there exist temporal and spatial derivatives of a Maxwellian. The local

spatial derivatives can always be constructed from the interpolated macroscopic flow variables, such as the

gradients of mass, momentum, and energy. For the temporal derivatives, they have to be evaluated based

on the compatibility conditions, such as f D29¢_dud{ld_.e = 0 and f DyO_dud{ld{2 = 0 of the Chapman-

Enskog expansion. The detailed numerical procedure is given in [13]. In summary, based on the BGK model

and the closure of the Chapman-Enskog expansion on the Navier-Stokes order, we derive a new local particle

collision time 7,, such that

(2.7) 7, = 7/(1 + 7(D2g/Dg}).



Based on the above T,, the viscosity and heat conduction coefficients will depend on both the macroscopic

variables and their slopes. In the continuum regime, since the higher-order dissipation should have less effect

than the lower order one, {D'2g/Dg) will theoretically go to zero. This is verified in the following shock

structure calculation.

In recent years, an accurate gas-kinetic BGK Navier-Stokes solver (BGK-NS) has been developed for the

viscous solution in the continuum regime by the current author and co-workers [12]. In the following argon gas

shock structure calculations, we are going to use the above BGK-NS method, but with the implementation of

the new particle collision time r,. For a monatomic gas modeled by point centers of force, the kinetic theory

leads to a viscosity # proportional to T* and the Prandtl number Pr = #Cv/Iv is a constant equal to 2/3,

where u is the heat conduction coefficient. The temperature exponent s is given by s = 1/2 + 2/(v- 1), where

v is the power index of the inter-molecular force law. For argon gas at STP, v= 7.5 is cited by Chapman

and Cowling [6] based on early viscosity data. Recent work by Lumpkin and Chapman [7] suggests that

v= 9 is a better approximation, which is confirmed through systematic calculation of shock wave profiles.

In our calculation, the local Navier-Stokes particle collision time r is first evaluated according to r = #/p,

where # _ T _ and p is the local pressure. Then, the new value r, is obtained according to Eq.(2.?). With

the general T,, the BGK-NS solver is used for the shock structure solution [12]. Since the BGK scheme is

a finite volume method, even with intrinsic unit Prandtl number in the BGK model, the heat flux across a

cell interface can be modified to simulate a gas with any realistic Prandtl number [12], such as 2/3 for the

current argon gas. The shock structure is obtained using a time accurate BGK-NS solver until a steady state

is reached. In each calculation with fixed # and Pr, the mesh size is chosen to make sure that there are at

least 30 mesh points in the shock layer and the whole computational domain is covered by 200 grid points.
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FIG. 2.1. Comparison of the theoretical shock thickness ,_l/Ls vs. Mach number M_ with the experimental data [2]. The

solid lines are the results from the BGK-NS solver [12] and the new BGK-Xu model. The simulations are done for both v 9.0

and 7.5 eases.

Studies of the shock structure are generally validated by comparing the reciprocal density thickness with

experimental measurements. The thickness is defined as

Ls = (P2 -- pl)/(dp/dx) .... •
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BGK-NS solution with v 7.5; solid line, BGK-Xu solution with v 7.5; circles, experimental data ]'or argon gas [2].

The above shock thickness is normalized by the upstream mean fl'ee path,
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Figure 2.1 displays the results, where "BGK-NS" refers to the solution of the BGK Navier-Stokes solver

with the original particle collision time w -- #/p [12], and "BGK-Xu" refers to the results from the same

BGK Navier-Stokes solver but with the implementation of the new value w,. Both v-- 9 and v-- 7.5 cases are

tested. All symbols in Figure 2.1 are the experimental data presented in [2], which are extensively used by

many others to validate their models [1, 11]. The solution from the current new model (BGK-Xu) matches

perfectly with the experimental data. Figure 2.2 presents the density distribution pn = (P - P_)/(P2 - Pl)

vs. x/)_l, where v= 7.5 is used in both BGK-NS and BGK-Xu solutions. The circles in Figure 2.2 are the

experimental data from [2]. From these figures, we can observe that the general particle collision time used

significantly improves the results. In the continuum flow regime, where the Mach number of the shock wave

goes to 1.0, the BGK-NS and BGK-Xu solutions converge. In other words, T, approaches to T automatically

as Knudsen number decreases.

3. Conclusion. In this paper, we have developed a generalized constitutive relation, where the viscosity

coefi%ient depends not only on the macroscopic variables, but also on their gradients. Even with the closure

of the Chapman-Enskog expansion on the Navier-Stokes order, the results from this new model agrees well

with the experimental data in the study of argon shock structure. The generalization of the collision time

from T to %,

T

7,----
1 + _-{D2g/Dg) '

is important to capture the rarefied gas effect in the continuum transition regime. In the continuum regime,

such as the Mach number approaching to 1.0 in the shock ease, the contribution from (D'2g/Dg} disappears

automatically. This can be understood physically that in the near equilibrium flow the higher order con-

tribution (Burnett D2g) has much less effect than the lower order term (Navier-Stokes Dg). The further



applicationofthisnewBGK-Xumodelin thecontinuumtransitionregime,suchasCouetteandPoiseuille
flows,willbepresentedinsubsequentpapers.
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